Ukiah Valley Basin Groundwater Sustainability Agency Technical Advisory Committee Meeting

Ukiah Valley Groundwater Sustainability Plan Development Update

October 15, 2019

Outline

- HCM & DMS Update and Discussion
- Water Budget Preliminary Discussion
 - Root Zone Water Budget
 - Hydrological Model
 - Groundwater Model
 - Integration
- Review and Commenting Process
- Prop. 68 Grant

Draft Hydrogeologic Conceptual Model

Ukiah Valley Basin Groundwater Sustainability Plan

HCM Structure and SGMA Requirements

Significant Sections and Changes

Data Gaps and Additional Analysis

HCM Structure and SGMA

Table of Contents

1.	Introduction	
2	Basin Setting	
	2.1 Basin Boundary	
4.	Regional Geology	10
	4.1 Geologic History	
	4.2 Geologic Formations	
	4.2.1 Quaternary Alluvium	
	4.2.2 Terrace Deposits	
	4.2.3 Continental Basin Deposits	1'
	4.2.4 Franciscan Formation	
	4.3 Faults and Folds	1
	4.3.1 Maacama Fault	
5.	Principal Aquifers and Aquitards	18
	5.1 Aquifer I – Quaternary Alluvium	
	5.3 Aquifer III – Continental Basin Deposits	
	5.4 Aquifer Water Quality	
	5.5 Aquitards	
	5.6 Beneficial Users	
	6.1 Groundwater Flow Direction and Gradient	
	6.2 Recharge Areas	
	6.3 Discharge Areas	
	7.1 Surface Water Characterization	26
	7.1.1 Water Systems Operations	33
	7.2 Groundwater – Surface Water Interaction	33
5.	Data Gaps	
9.	References	
Appendix A.	LACO Initial Hydrogeologic Conceptual Model	
Appendix B.	DWR Hydrogeologic Conceptual Model BMP	60
Appendix C.	Cross Section Well Logs	
	g-	
Hydrogeologic (Conceptual Model GE	I Consultants, Inc
Ukiah Valley Ba	sin ii	DRAFT

Soils Geologic Cross Sections Principal Aquifer II Groundwater Recharge and Flow Surface Water HCM Structure and SGMA Requirements

Significant Sections and Changes

Data Gaps and Additional Analysis

Soils Analysis

Textural Cross Sections A-A'

Textural Cross Sections A-A'

Textural Cross Sections B-B'

Textural Cross Sections B-B'

Textural Cross Sections C-C'

Textural Cross Sections C-C'

Principal Aquifers

Principal Aquifer I: Quaternary Alluvium

Principal Aquifer III: Continental Deposits

Principal Aquifer II: Terrace Deposits

PRINCIPAL AQUIFER III

Lithology Hatching Patterns

GP-Poorly graded gravel SP-Poorly-graded sand SW-Well-graded sand fine to coarse sand SM-Sand with fines silty sand GP*-Cemented Gravel SP*-Cemented Sand

Legend

GC-Gravel with fines clayey gravel SC-Sand with fines clayey sand ML-Inorganic silt GC+Cemented Gravel Clay CL-Inorganic day XLN-Crystalline Rock

Note: USCS classifications assigned by GEI based on interpretation of driller well log sediment descriptions. Groundwater surface elevations based on 2019 water surface elevation contours generated y GEI. 3 Principal Aquifers Quaternary Alluvium Terrace Deposits Continental Deposits

		Recent Alluvium		Terrace Deposits		Continental Deposits		
		Hydraulic Properties	Thickness	Hydraulic Properties	Thickness	Hydraulic Properties	Thickness	
eview	Cardwell	Specific Capacity: 5-400 gpm/ft Yield: > 100 gpm	50-80 tl.	Specific Capacity: < 1ggm#t Yield: App. 60 gpm	Up to 200 til.	Specilic Capacity: < tguntt Yield: 50 gam	1,500	
ature Re	DWR 118	Specific Yield: 20%	50-80 fL	Unconfined/confined conditions	Up to 200 fL		Up to 2,000 f	
Litera	Ferrar	Connection to River Yield: up to 1,000 gpm	< 100 fL	Specific Capacity: 0.02 - 7.1 gpm#t Yield: 1-100 gpm		Specific Capacity: 0.004– 1.33 gpmH Yield: 0.75-50 gpm	Up to 2,000 i	
	HCM	Specific Capacity: 8-33 gpm/ft Conductivity: 153-218 ft/day	20-200 ft.	Specific Capacity:0.15.7 gpmH Conductivity: 0.23 - 15.75 fi/day	Up to 200 fL	Specilic Capacity: 0.02-1.95 Conductivity: 0.01-0.51 fl/day	> 2,000 fL	

Broke out the 3 principal aquifers based on geologic units; very distinct hydrogeologic properties and uses

Principal Aquifers

Groundwater Recharge and Discharge

- Recharge where coarse soils found in addition to streambeds
- Groundwater flow and discharge determined from contours

Did the required work for SGMA that wasn't done in the previous HCM

Surface Water Characterization

		Station 11462500 Russian River North of	Station 11462000 East Fork Russian River	Station 11461000 Russian River North of Ukiah	Wet	2
	wonth	Hopland (cfs)	(CTS)	(CTS)	Vooro	-
Station	January	1563	519	406	rears	
Station	February	1517	478	442	Average	
	March	1118	308	356		20
	April	592	278	168	(cts)	
	May	297	229	59		
114610	June	176	195	16.2	232	
	July	174	222	3.3		
11/620	August	181	229	0.8	351	
114020	September	179	229	0.6	331	
	October	197	224	6.8	540	
114620	November	220	170	40.5	518	
	December	920	208	335		
	Max historical					-
114625	flow	27,403	5,329	10,083	759	
	Min historical					
	flow	21	5	0	Russian River Watersh	ed
			Ukiah Valley Basin O Sustainability A	Groundwater GEI		

Surface Water/Groundwater

Monitoring wells paired with stream gauges will characterize GW/SW interaction

HCM Structure and SGMA Requirements

Significant Sections and Changes

Data Gaps and Additional Analysis

DMS

Data Gaps

Additional North-South cross section Water Quality Data (Principal Aquifer I and Russian River)

Pump test data Imported and exported water supplies

North-south cross section will help to define extent of principal aquifers in the basin

Water Quality

DRAFT

FIGURE 11

Data Source: UPDATESOURCE

o Largo

AUGUST 2019

Open GeoTracker Sites

Constituent Parameter	Reported range (units as shown)	Reference
Total Dissolved Solids	· Range: 87-301 mg/L	DWR, 2004;
	· Average: 166 mg/L	Kunzler Terrace Mine, 2009
	· 190.0 mg/l (KP-MW 1, 1 July 2005)	
	· 190.0 mg/L (Well P 6 2, October 2002	
Total Hardness	· Moderately Hard to Hard Bicarbonate	DWR, 2004;
		Kunzler Terrace Mine, 2009
Chloride	· 7.3 mg/L (KP-MW 1, 1 July 2005)	Kunzler Terrace Mine, 2009
	· 6.1 mg/L (Well P6, 2 October 2002)	
	· 6.5 mg/L (015N012W08F001M3, October 1981)	
Electrical Conductivity	· 250.0 (July, 2005)	Kunzler Terrace Mine, 2009
	· 293.0 (015N012W08F001M3)	
	incorp18_2	Const

Miles

Ukiah Valley Subbasin HCM Mendocino County, California

Mendocino County Water Agency

GE

HCM Structure and SGMA Requirements

Significant Sections and Changes

Data Gaps and Additional Analysis

Our Task: Build a DMS Capable of...

Storing Data

Reporting Data

Importing Data

Our Task: Build a DMS Capable of...

Importing Data

QA/QC data

Import data as GSP is developed Develop templates to import data Develop interface to import data from templates

Tasks Completed

Additionally

- Database contains data used to develop HCM
- Ready to import data during continued development of GSP
- Can be deployed when basin is ready

Simpler and More Efficient

Meeting the Requirements

SGMA Requirements:

Article 5, Section 354.40: Monitoring data shall be **stored in the data management system** developed pursuant to Section 352.6. A copy of the **monitoring data** shall be **included in the Annual Report** and **submitted electronically on forms** provided by the Department.

Well information used to develop the basin setting shall be maintained in the Agency's data management system.

Meeting the Requirements

Well Data	Monito	ring Data
Construction Info	Subsidence	Water Quality
Screen Info	Diversions	Managed Recharge
Aquifer Info	Gage Measurements	Groundwater Level
Lithology Info	Well Pumping	Sustainability Indicators

Templates To Make Importing Simpler

- Public data sources
 - CASGEM
 - GAMA GeoTracker
- Data import templates
 - Local agencies
 - Data obtained via GSP development

Data Import Started, but

Data Type	Data Points	Period of Record
Station	149	
Well	145	
Well Construction	97	
Well Screen	169	
Well Lithology	367	
Well Aquifer	0	
Well Pumping	0	
Groundwater Level	676	1966 - 2019
Water Quality	24,291	1984 - 2019
Sustainability Indicators	0	
Managed Recharge	0	
Subsidence	0	
Diversions	0	
Gage Measurement	0	

More Input Required

Data Type	Data Points	Period of Record
Station	149	
Well	145	
Well Construction	97	
Well Screen	169	
Well Lithology	367	
Well Aquifer	0	
Well Pumping	0	
Groundwater Level	676	1966 - 2019
Water Quality	24,291	1984 - 2019
Sustainability Indicators	0	
Managed Recharge	0	
Subsidence	0	
Diversions	0	
Gage Measurement	0	

Needed To Work With the DMS:

Staff that has:

- DATABASE SKILLS (ability to write queries)
- VBA programming language (optional)

But if you don't have someone we can provide support for YOU!

Questions?

Outline

HCM & DMS Update and Discussion

- Water Budget Preliminary Discussion
 - Root Zone Water Budget
 - Hydrological Model
 - Groundwater Model
 - Integration
- Review and Commenting Process
 Prop. 68 Grapt
- Prop. 68 Grant

PRMS: Precipitation

PRMS: Streamflow

PRMS: State of the Model

Hydrological Simulation is complete.

- Releases from PVP and subsequently Mendocino Lake is simulated through USGS/CDEC stream gauge.
- Surface water and groundwater diversions are being estimated and are not yet included.

• To be done by January 2020:

- Final diversion estimations to be completed and implemented in the model.
- Calibration and validation of the model.
- Complete historical and current surface water budget.
- Preliminary integration into the GSFLOW Framework.

PRMS: Pre-Calibration Results

Simulated at Hopland Gauge (Basin's Drainage)

Integrated Water Flow Model Demand Calculator (IDC)

- IDC calculates agricultural and urban water demands at a river basin.
- Agricultural water demand is calculated based on climate data, crop types, crop acreages, soil properties and irrigation methods.
- Urban demand is calculated based on population and per-capita water

IDC: Discretization

 Spatial: 228 Combinations of unique Land Use, Hydrologic Soil Type, and Precipitation.

Temporal:

- From Jan 1, 1991
- To Dec 31, 2018
- Daily timesteps
- o 10,227 timesteps

Grazing Fruits Grapes Pasture Citrus/Subtropical Apples Greens and Vegetables Idle Walnuts Grains Grass Field Crops Pears Pistachios Alfalfa/Clover Peaches & Nectarines Not irrigated Native Vegetation Urban Water **Riparian** Vegetation

Precipitation

NOAA POTTER VALLEY POWERHOUSE Average of: NOAA UKIAH MUNICIPAL AIRPORT; UKIAH

Soil Type
А
В
С
D
Unknown
ЕТо
CIMIS Station# 106 (Sanel
Valley)*

IDC: ETo

IDC: Frost/Heat Control

- Problems of hourly data
 - Averaged NOAA Ukiah and CDEC LYO
 - 27% missing data points for 1991-2018
- Frost Control
 - We need to be able to determine individual events and their length for their impact on soil moisture, river, and for future scenarios.
 - Local understating is 5 events per year using 50 gal/min/acre for 3-8 hours. But not every year has a frost event.
 - We prefer not put average values into either PRMS or IDC.
- Heat Control
 - Local understanding is one event per year using the same 50 gal/min/acre for 2-4 hours.
 - Not everybody uses the approach.
 - We prefer to find a way to put exact or constant average in the model for soil moisture and impact on streams.

IDC: Frost/Heat Control

	Number of	Average
	Protection	Each Event
Year	Days	(hr)
1994	2	9.0
1995	1	9.0
1999	3	8.7
2000	4	8.5
2001	9	8.7
2002	14	9.2
2003	17	8.4
2006	5	8.6
2008	4	7.8
2009	3	8.3
2010	4	7.3
2011	1	7.0
2012	6	8.0

- Are we using the right gauges?
- Are we using the right threshold:
 - 34 F between 9PM 2AM with a decreasing trend
- Is there a resource to directly obtain this information?
- Do these numbers make sense?

IDC: Grapes

IDC: Grapes

IDC: Pears

IDC: Pasture

IDC: Preliminary Results

In comparison with Lewis et al. (2008), we are over-estimating slightly. This may be due to inaccurate irrigation efficiency, different temporal periods of the two assessments, or different sets of crop coefficients.

	Area (acres)		Consumptive use (AFY)			
			IDC (Irrigation			
			Efficiency=0.88;			
	IDC	Lewis et al.	Pasture=0.75)	Lewis et al.		
Grapes	13733	15540	10895	9479		
Pears	1308	1845	3464	4263		
Pasture	2887	3144	10333	6287		

IDC: What is next?

- Frost and heat protection adjustments. Optimizing the determination of these events may improve our results.
- Temporal adjustments to the land use.
- Temporal adjustments to the irrigation method efficiency.
- Linking the estimated applied water to surface water diversions or well pumpage and add to PRMS.
- Compare IDC results with the new GSFLOW Ag Package and evaluate the difference.

Spatial: 100m x 100m Grid

- Rows: 483
- Columns: 343
- Cells:165,669
- Active Area: 238,980 acres
- Basin Area: 37,531 acres

Temporal:

- From Jan 1, 1991
- To Dec 31, 2018
- Monthly timesteps
- o 366 timesteps

Model Layers :

Aquifer(1):

Channel Alluvium

Model Layers :

Aquifer(2) :

Terrace Deposit

Model Layers :

Aquifer(3):

Continental Deposit

Boundary Conditions: Streams

Previous Modeling Effort:

Current Modeling Effort : Stream Flow Routing Package (SFR) 6 Miles Legend Stream Segments 🔲 Subbasins Extent Stream Flow Routing Lake Mendocino Model Extent Package (SFR) GSA Boundary

Boundary Conditions: Pumping

Well Package: defines negative flux at a specific coordinate within the model.

1. Pumping data are available for the Wells Below

Name	Туре	Pumping (AF/month) till December 2015
Calpella W1	MI	2.13
Ukiah WTP	MI	0
Ukiah W2	MI	0
Ukiah W3	MI	10.59
Ukiah W4	MI	0
Ukiah W7	MI	24.59
Ukiah W8	MI	8.05
Willow/Nogard W5	MI	12.35
Willow/Nogard W6	MI	12.35
Willow/Burke W7	MI	12.35
Willow/Burke W8	MI	12.35

2.	Pumping	data	are	missing	for	the	Wells	Below
----	---------	------	-----	---------	-----	-----	-------	-------

	_	
Name	Туре	Pumping (AF/month)
Millview W17	MI	-
Millview W12	MI	-
Millview W16	MI	-
Masonite W6	MI	-

Modeling: What is next?

Streamflow Routing (SFR)

the MODFLOW **Groundwater** Model

PRMS Rainfall Runoff Watershed Model

IDC or GSFLOW Agriculture Model

Watershed

runoff

Surface flow

to streams

Surface Water Groundwate available for Agriculture

Surface and groundwater flows

ET demand for crops is met by irrigation with groundwater or surface

Outline

- HCM & DMS Update and Discussion
- Water Budget Preliminary Discussion
 - Root Zone Water Budget
 - Hydrological Model
 - Groundwater Model
 - Integration
- Review and Commenting Process
- Prop. 68 Grant

Outline

- HCM & DMS Update and Discussion
- Water Budget Preliminary Discussion
 - Root Zone Water Budget
 - Hydrological Model
 - Groundwater Model
 - Integration
- Review and Commenting Process
- Prop. 68 Grant

Questions?

Thank you!