Scouring Velocity (recommended 1 ft/sec for drip-tubing)

Velocity x Area = Quantity (flow rate)

$$ft/sec$$
 x $ft^2 = ft^3/sec$

$$ft/sec$$
 x ft^2 x 7.48 gal/ft^3 x $60sec/min = gal/min$

ft/sec
$$\times r^2\Pi \times (1ft^2/144in^2 \times 7.48 \text{ gal/ft}^3 \times 60 \text{sec/min}) = \text{gal/min}$$

ft/sec
$$x r^2 \Pi x (3.1167) = \text{gal/min}$$

Example for drip-tubing:

1ft/sec x
$$(0.5)^2$$
 x 3.14 x 3.1167 = 2.5 gal/min per lateral

(1" lateral = 9.79 gal/min per lateral)

(1.25" lateral = 15.29 ga./min per lateral)

Scouring velocity can easily exceed pump capacity for larger lateral sizes!

Scouring Cycle Length

Length x Velocity = Time

 $98 \text{ ft } x \quad 1 \text{sec/ft} = 98 \text{ sec}$

good idea to double or triple the time for a complete scouring!

1. EXAMPLE: many short lines

490 ft of drip-tubing = 10 lines of 40 ft each

Pump would need to produce: 10 x 2.5 gal/min or 25 gal/min to achieve scouring velocity.

Pump would need to run for 49 x 1 sec/ft or 49 seconds minimum.

2. EXAMPLE: several long lines

490 ft of drip-tubing = 5 lines of 98 ft each

Pump would need to produce: 5 x 2.45 gal/min or 12.25 gal/min to achieve scouring velocity.

Pump would need to run for 98 ft x 1 sec/ft or 98 seconds minimum